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ABSTRACT 
This paper investigates the validity of commonly used terramechanics models for light-weight vehicle applications while 

accounting for experimental variability. This is accomplished by means of cascading uncertainty up to the terminal point of 

operations measurement. Vehicle-terrain interaction is extremely complex, and thus models and simulation methods for 

vehicle mobility prediction are largely based on empirical test data. Analytical methods are compared to experimental 

measurements of key operational parameters such as drawbar force, torque, and sinkage. Models of these operational 

parameters ultimately depend on a small set of empirically determined soil parameters, each with an inherent uncertainty 

due to test variability. The soil parameters associated with normal loads are determined by fitting the dimensionless form of 

Bekker’s equation to the data given by the pressure-sinkage test. In a similar approach, the soil parameters associated with 

shear loads are determined by fitting Janosi and Hanamoto’s equation to the data given by the direct shear test. An 

uncertainty model is used to propagate the soil parameter variability through to the wheel performance based on Wong and 

Reece. The commonly used analytical model is shown to be inaccurate as the envelope of model uncertainty does not lie 

within the experimental measures, suggesting that model improvements are required to accurately predict the performance of 

light-weight vehicles on deformable terrain. 

BACKGROUND 
The study of the interaction of wheeled and tracked 

vehicles with natural terrain is dominated by the 

discipline of terramechanics. Terramechanics research 

over the past 50 years has primarily focused on large, 

heavy military vehicles. A substantial body of 

terramechanics research has been performed at the U.S. 

Army Tank Automotive Research, Development, and 

Engineering Center (TARDEC) and the U.S. Army 

Engineer Research and Development Center (ERDC) that 

led to the development of various mobility prediction 

methodologies including the NATO Reference Mobility 

Model (NRMM). These methodologies are numerical 

algorithms for predicting cross-country vehicle movement 

at length scales of several meters to several kilometers. 

They are based on empirical results drawn from years of 

resource-intensive experimental testing and have been 

used widely by the military community. However, as a 

consequence of their empirical nature, while the methods 

are useful for prediction of large, heavy vehicle mobility, 

it remains an open question whether they can be reliably 

used for the prediction of small, lightweight vehicle 

mobility. 

Recently the Department of Defense (DoD) has devoted 

substantial resources toward the development of small, 

lightweight ground vehicles.  These vehicles are often less 

than 36 inches in length and weigh less than 100 lb. They 

are equipped with wheels, tracks, or bio-inspired limb-

like appendages. Due to the lack of mobility models for 

these vehicles, there is a lack of simulation methods for 

this class of vehicles. Also, since these vehicles have only 

recently been adopted by the DoD, there is a lack of 

systematic empirical test data. As a result, these vehicles 

have primarily been developed based on ad hoc design 

rules, limited empirical testing, and application of 

classical Bekker theory. Thus, there is a lack of methods 

(based on simulation or analysis) to reliably predict the 

mobility and performance of these systems. 

This paper will describe two experimental methods used 

to characterize mechanical soil behavior for lightweight 

vehicles. A pressure-sinkage test and a standard direct 

shear test as outlined by Bekker in [1] were performed on 

a cohesion-less soil [2]. This paper investigates 

identification of soil parameters from the experimental 

data and assesses the data variability, which is inherent in 

both tests. The variability in the soil parameters is 

propagated to determine the overall wheel performance 
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uncertainty. Probabilistic, rather than strictly 

deterministic, soil behavior is considered in this paper 

because it is an increasingly important consideration for 

accurate modeling of lightweight robotic vehicle 

performance. 

METHODOLOGY 
Semi-empirical methods for modeling wheel 

performance, like the one used in this paper by Wong and 

Reece [3], rely on the relationship between soil sinkage 

and resistance force to infer the normal stress under a 

wheel. To predict the tractive force, the shearing strength 

of the soil is analyzed based on Coulomb’s formula [4]. 

Methods of this class are ultimately based on 

experimentally determined soil parameters, whose 

inherent variability causes uncertainty in the 

determination of wheel performance. The order of the 

paper is as follows. The first section describes the 

equipment and methods used to determine the variability 

in soil parameters; the second section describes the wheel 

model in which these parameters are used and the 

techniques used to compare prediction to experimental 

data. 

Mojave Martian Simulant (MMS) [2] was employed as a 

test medium for the experiments in this paper. MMS is a 

mixture of finely crushed and sorted granular basalt 

intended to mimic, both at a chemical and mechanical 

level, Mars soil characteristics. No direct application to 

Mars rovers is provided in this paper, the simulant is a 

frictional soil found in dry, sandy terrain. The particle size 

distribution of MMS spans from the micron to millimeter 

level with 80% of particles above the 10 micron 

threshold. 

Experimental Equipment 

Pressure-Sinkage Test 
The sinkage characteristics of the MMS were measured 

using the pressure-sinkage test shown in Figure 1. The 

pressure-sinkage test used a plate to penetrate the soil 

under controlled test conditions, while pressure and 

sinkage of the plate were directly measured.  A series of 

tests and various plate sizes allowed an investigation of 

both the influence of the pressure-sinkage parameters as 

described in Wong’s methodology [5] and test-to-test 

variability. 

The test unit was designed to systematically penetrate the 

soil with a downward velocity of 10 mm/s.  Penetration 

tests were performed with three different-sized 

rectangular plates (3x15, 5x15, and 7x15 cm
2
).  The tests 

were repeated 15 times for each plate.  A load cell and 

draw-wire encoder recorded the force and corresponding 

sinkage during each test.  Between tests, the soil was 

loosened with a stick and then leveled to return the MMS 

to a nominal density of 1.7 g/cm
3
.  Figure 2 shows a 

picture of a penetration plate about to enter the soil. 

 

Figure 1: CAD drawing of the pressure-sinkage test rig. 

A load cell and draw wire encoder recorded the force and 

sinkage of a plate that was pressed into the soil at 10 

mm/s. 

 

Figure 2: Penetration plate and soil (side view). 

Direct Shear Test 
The direct shear test, shown in Figure 3, is used to 

measure the shear strength properties of the MMS, 

specifically the cohesion, angle of friction, and shear 

modulus. A sample of the soil is contained in between 

two rigid discs that are held in place by a shear box. The 

shear box is aligned under a load cell that applies a 

normal force to the soil.  

Soil Parameter Variability 
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Figure 3: Experimental device for performing the direct 

shear test. 

The load cell is attached to a vertical translational joint 

that uses a linear variable differential transformer to 

measure displacement of the soil. The top of the shear box 

is clamped so that the lower half can be moved. The 

horizontal force required to displace the soil horizontally 

is measured by a dynamometer. The applied vertical force 

and measured horizontal force can be transformed into the 

normal and shear stress, respectively. The horizontal and 

vertical soil displacement is also output. 

Parameter Estimation 

Pressure-Sinkage Parameter Estimation 
To describe the pressure-sinkage relationship of a soil’s 

deformation under a rectangular plate, Bekker suggested 

Equation (1) based on the soil mechanics work originally 

performed by Terzaghi [6]: 

   ,  nck
k z

b


 
  
 

  (1) 

where   is pressure, b  is plate width, z  is soil sinkage, 

and n , 
ck  and k , are soil parameters.  The three 

parameters are empirical and have no intrinsic physical 

meaning. The parameters may be estimated from 

experimental pressure-sinkage data if at least two 

different plate sizes are tested. 

The process of determining the soil parameters from 

experimental data was originally performed by Wong 

using a weighted least squares method [7], which is the 

primary estimation technique used in this paper. From 

Equation (1), taking the logarithms of both sides gives: 

 ln ln ln .ck
k n z

b


 
   

 
   (2) 

An error function is defined as: 

 

2

ln ln ,lnc

r

k
F w k n z

b


  
     

  
   (3) 

where 
rw  is a weighting factor.  Standard least squares 

minimization of equation (3) would set 
rw  equal to 1.  

However, as Wong explains, error would be biased 

toward low pressures since the actual measured values are 

  and z , not ln  and ln z .  To account for 

minimization in the log-log domain and give equal weight 

to all data points, Wong sets the weighting factor 2   rw  . 

Since 
ck , b , and k   are constant values for a given test, 

they can be replaced by a single constant: 

 .c

eq

k
k k

b
     (4) 

Wong provides the following cost function over N  data 

points that is minimized to find optimal n  and 
eqk in 

Equation (5): 

  
2

2

1

ln ln   .ln
N

i i eq i

i

F k n z 


   
     (5) 

The first order KKT optimality condition leads to the 

following two equations: 
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2 2 2 2
ln  2 ln 2 ln   0.eq

eq eq

F
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 (7) 

Solving equations (6) and (7) for n  and 
eqk , yields: 

  

   

2 2 2 2

222 2 2
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   (8) 
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   (9) 

If the above analysis is performed for two sets of data 

corresponding to two different plate sizes (
1b , 

2b ), the 

average n  and two corresponding values of 
eqk  can be 

found: 
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Using the two values of
eqk , 

ck  and k  can be derived: 

      1 2

1 2
2 1
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 (14) 

Wong’s methodology is a clear and succinct way to 

obtain the three pressure-sinkage soil parameters ( n , ck ,

k ) from a set of experimental data. 

To avoid difficulties resulting from covariance between 

soil parameters, Reece’s revision of Bekker’s equation 

[3] was implemented by the authors of this paper.  

Reece’s equation is: 

   1 2  .

n
z

k bk
b


 

   
 

 (15) 

where 1k and 2k are empirical soil parameters. In 

simplified terms, Equation (15) reduces to: 

  ' .

n

eq

z
k

b


 
  

 
 (16) 

where the k coefficient is denoted as 
'

eqk  to distinguish 

from the 
eqk of Bekker’s equation. To provide a more 

thorough analysis of pressure-sinkage parameter 

estimation methods, four additional, modified approaches 

were also considered.  The resulting parameters of all five 

methods are compared. Because Wong’s pressure-sinkage 

relation and Reece’s modification have the same format 

for any single plate, the results of the following methods 

apply equally to both. 

Method 1 is performed using Wong’s equations (8)-(14) 

previously given for individual experimental tests. 

Method 2 is a modified version of the technique 

presented by Wong.  The weighting factor 
rw  in equation 

(3) is changed from 
2  to 1.   The resulting equations for 

n  and 
eqk  are derived analytically using a similar 

approach as Wong: 
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ln  

z
z

Nn
z

z
N


 





 





 (17) 

 
ln     ln

  .eq

n z
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N

 
  

 
 

 
 (18) 

From Equation (17), ck and k  can be derived in the same 

manner as equations (13) and (14). 

For the final three methods, Levenberg-Marquardt 

numerical optimization (from the lsqnonlin() 

function  in MATLAB’s optimization suite [8]) is used to 

find n , 
eqk  pairs that minimize the respective error 

functions.  

Method 3 minimizes error in the ordinary z   domain.  

No weighting was considered because error and actual 

measurements are in the same domains.  The 

minimization function is: 

 
2

.  n

eqF k z     (19) 

Method 4 has an identical error function to that of 

method 2: both are in the log-log domain and have wr set 

to 1.  The only difference is that method 4 is numerically 
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minimized, whereas method 2 is analytically derived.  

The minimization function is: 

 
2

  ln .ln   lneqF k n z      (20) 

Method 5 is the numerical version of Wong’s method, 

method 1.  The minimization function is: 

 
2

2  l n n .n l   leqF k n z       (21) 

Methods 1-5 are summarized in Table 1. 

Table 1: Alternative methods to estimate pressure-

sinkage parameters.  

 

Individual parameter estimation of the 45 pressure-

sinkage tests was performed using each of the five 

methods.  The error of a fit for all methods is calculated 

using Wong’s suggestion: 

 

2( )

2
  ,

m c

m

N

N

 












 (22) 

where 
m is measured pressure, 

c  is estimated pressure, 

and N is the number of data points. 

Direct Shear Parameter Estimation 
Several soil parameters can be determined using the direct 

shear test. Specifically, the residual shear stress, res , and 

shear modulus, K , can be determined by fitting the 

Janosi and Hanamoto equation to each data set, and the 

cohesion, c , angle of internal friction,  , can be found 

using the Mohr-Coulomb failure criteria. 

Janosi Hanamoto Equation for Shear Stress 
The shear-displacement expression suggested by Janosi 

and Hanamoto [9] assumed the form of Equation (23) for 

loose soils: 

 1 ,
j

K
res e 

 
  

 
  (23) 

where   represents the shear stress and j  is the 

displacement due to shearing. The parameters 
res  and K  

are determined by minimizing the sum of the differences 

between the experimental value of   and the estimate at 

the
thi data point in Equation (24) using the Levenberg-

Marquardt algorithm: 

  

2

1

,, 1
ijN

K
ires res

i

F K e  




  
     

  
  (24) 

The first order KKT optimality condition leads to the 

following two equations: 

   0
F

K





  (25) 

 0
res

F







  (26) 

where the partial derivatives are determined using a 

numerical central differences approach. 

Mohr-Coulomb Failure Criteria 
For a given normal load, the soil is said to fail when it 

reaches its residual shear stress. According to the Mohr-

Coulomb failure criteria [10], a line of best fit can be 

determined by plotting the residual shear stress, res , as a 

function of normal stress ,  , as follows: 

  tan ,res c     (27) 

where the intercept is equal to the cohesion and the slope 

is related to the angle of internal friction. The line of best 

fit is determined using the closed-form equation for linear 

fitting over N  data points (Equation (28)). The closed-

form equation will be useful for propagating the 

uncertainty later: 
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  (28) 

This section details the experimental method used to 

obtain the wheel performance measurements, explains the 

theory behind the prediction of wheel performance, and 

describes the derivation behind the method of uncertainty 

propagation. Since the techniques used in this paper rely 

on estimates of the stress distribution to determine wheel 

performance, the ability to measure these quantities allow 

for a direct comparison of prediction to reality. The 

uncertainty propagation gives an envelope of system 

performance that the experimental data can be compared 

against. 

Experimental Methodology 
A complete investigation into the performance of the 

wheel requires insight into several different measures of 

the wheel-soil interaction. In this paper, physical 

measurements of contact stresses, force, torque, and 

sinkage were used to compare to the theoretical model. A 

single-wheel test rig, shown in Figure 4, was used to 

empirically investigate the wheel motion under controlled 

wheel slip and normal loading conditions on the cohesion-

less soil [11]. This test rig enables the control of velocities 

and application of loads through interchangeable running 

gear within a confined soil bin of dimensions 1.5 m long, 

0.7 m wide, and 0.4 m deep. The drawbar pull, wheel 

torque, and sinkage were measured for a lug-less rigid 

wheel with a radius of 0.13 m and a width of 0.16 m at 

slip ratios varying from zero to unity. Tests were run for 

two different cases: normal loads of 70 N and 135 N.  

 

Figure 4: A single wheel test bed was used to measure 

the drawbar pull, torque, and sinkage at varying slips and 

normal loads. 

 

 

Figure 5: A wheel with a custom force sensor array was 

used to measure the stress distribution at the contact 

patch. 

To measure the stress distribution at the contact patch of 

the wheel, an identical wheel with a custom force sensor 

array located at the wheel surface was used [12]. The 

force sensors are strain gauge-based flexural elements 

with interchangeable interface surfaces that are designed 

for integration with wheels or other running gear. The 

normal and shear stresses are estimated based on 5 

sensors, shown in Figure 6, that are located at discrete 

points from the center to the edge of the wheel-soil 

interface. 

Wheel Performance Uncertainty Propagation and 

Verification 
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Figure 6: A top view of the wheel shows the layout of the 

strain gauge-based sensors. Note that the sensors are 

arranged with Sensor I at the center of the wheel and 

Sensor V at the outer edge. 

Each sensor, shown in Figure 7, is a solid-state L-shaped 

aluminum flexure instrumented with two full bridge strain 

gages. The sensor is mounted rigidly to the running gear, 

and its interface element is exposed to the soil. The 

interface element is generally subjected to normal, N , 

and shear, T , loading. These forces cause the flexure 

elements to deflect in a linear elastic manner. From 

measured deflection, and given prior calibration data, the 

applied forces can be uniquely computed, with axial strain 

intrinsically rejected by the full bridge configuration. 

Stress can then be inferred assuming uniform pressure 

distribution over the known sensors’ head area. 

 

Figure 7: Working scheme of the custom force sensor for 

interfacial stress measurement. 

Mathematical Model of Rigid Wheel on Soft Soil 
The rigid wheel free-body diagram based on the work of 

Wong and Reece [3], shown in Figure 8, is used in this 

paper to model the interaction between the wheel and the 

soil. Using this model, the drawbar pull D , torque T , 

and sinkage z , can be determined for a wheel of weight 

W , radius r , and wheel width b , travelling at a linear 

velocity v . 

 

Figure 8: Forces, torque, and stresses on a driven rigid 

wheel. 

The sinkage of the wheel is commonly converted into 

polar coordinates using the wheel hub as the origin. Once 

the limits of the contact patch,
1  and

2 , between the 

wheel and the soil are determined, the drawbar pull and 

torque can be calculated by integrating the radial and 

tangential stresses over the wheel. 

At a specified slip, i , it is possible to determine the 

sinkage, forces, and torques that act on a wheel given the 

soil parameters and wheel properties [3]. A force balance 

in the vertical direction yields an equation for the weight, 

W , of the tire: 

 

  

W = rb
-q

2

q
1

ò s cosq +t sinq( )dq ,   (29) 

where the normal stress,  , is determined by Equation 

(16) and the shear stress,  , is computed as: 

   /tan 1 j Kc e        (30) 

where the shear deformation, j , is based on the velocity 

of the slip: 

      1 11 sin sinj r i           (31) 

Based on geometry, the sinkage, z , can be converted to 

polar coordinates using: 

  1 1cos cos         Mz r          (32) 

It is important to note that Equation (32) can only be used 

when the normal stress on the wheel is increasing, which 

occurs from the front contact angle, 1 ,  to a maximum 
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radial stress, 
M . At 

M  the stress will begin to decrease 

in a similar fashion until reaching zero at the rear contact 

angle, 
2 . The symmetry between the front and rear 

regions is employed to derive a relationship for sinkage 

when the normal stress is decreasing: 

 2

1 1 1 2

2

  cos cos      M M

M

z r
 

      
 

   
              

  (33) 

where 
M  can be approximated as a function of 

1  , i , 

and two coefficients that give an estimation of the 

maximum stress, 
1c and 

2c  [3]: 

  1 2 1M c c i     (34) 

With the assumption that 2 0   (which is true when rut 

recovery is small), the only unknown in Equation (29) 

becomes
1 . The integral in Equation (29) cannot be 

solved analytically and is solved numerically via an 

iterative technique. After the front contact angle is 

determined, the forces (thrust H , motion resistance R , 

and drawbar pull D ) and the input torque, T , can be 

determined by integrating the stresses over the wheel 

contact area: 

  
1

2

cosH rb d





  


   (35) 

  
1

2

sinR rb d





  


   (36) 

  D H R   (37) 

  
1

2

2T r b d





 


   (38) 

Finally, the maximum wheel sinkage, 0z , can be 

determined using Equation (32) at 0  : 

   0 11 cosz r   (39) 

Uncertainty Propagation 
The objective of any uncertainty analysis is to obtain an 

estimate of the overall uncertainty, i.e. uncertainty 

envelope, of an output given the individual uncertainties 

of the inputs. Previous work, including Virginia Tech’s 

Center for Vehicle Systems and Safety [13] and the 

Massachusetts Institute of Technology’s Robotic Mobility 

Group  [14], used Polynomial Chaos Theory to quantify 

the uncertainty associated with terramechanics systems. 

The method for propagating the uncertainty in this paper 

is described in [15], and summarized as follows: 

Given an arbitrary function, r , that depends on the 

measured variables 
1 2, ,...x x

 
whose distributions are 

normal: 

 1 2( , , ),r f x x    (40) 

the variance of r , 2

r , can be determined statistically 

based on discrete values of the function, 
ir , and the mean 

of the function, 'r , using: 

  
2

2 '

0

1
lim .

N

r i
N

i

r r
N






 
  

 
  (41) 

The difference, 
ir , between a particular value, 

ir , and 

its mean value, 'r , can be determined from a Taylor 

series expansion, where higher order terms are assumed to 

be negligible: 

      ' ' '

1 1 2 2

1 2

i i i i

r r
r r r x x x x

x x


    
         

    
 

 (42) 

If the equation for r  is substituted into Equation (41), 

we obtain: 

   
2

2 ' '

1 1 2 2

1 1 2

1
lim

N

r i i
N

i

r r
x x x x

N x x





     
        

      
  

 (43) 

which can be rearranged to yield: 
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1
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2

i iN

r
N

i

i i

r r
x x x x

x x

N r r
x x x x

x x






     
      

     
  

              



 (44) 

Note that the variances for 
1x  and 

2x  can be computed 

as: 

  
2

2 '

1

1
lim

j

N

x ji j
N

i

x x
N






 
  

 
   (45) 

where Equation (45) can be used to simplify Equation 

(44), resulting in Equation (46): 

1 2 1 2

2 2

2 2 2

1 2 1 2

2r x x x x

r r r r

x x x x
   

         
         

         
 

 (46) 

Note that the covariance term, 
1 2x x , is typically 

neglected because it is assumed that the variables 
1x  and 

2x  are statistically independent of one another. The above 

equation gives the standard deviation of the independent 

variable given the standard deviation of the variables that 

it depends on. A similar statement can be made for the 

uncertainty, to get the response uncertainty:  

 
1 2 1 2

2 2

2 2 2

1 2 1 2

2c x x x x

r r r r
u u u u

x x x x

         
         

         
 

 (47) 

Equation (47), hence, defines how the uncertainties of 

underlying variables propagates into the overall response. 

The specific parameters that contribute to the uncertainty 

of the wheel performance are listed in Table 5 and Table 

6. 

 

 

 

RESULTS 

Pressure-Sinkage Test 
A total of 45 pressure-sinkage tests were performed to 

analyze the bearing characteristics of the soil. The tests 

were repeated 15 times for three rectangular plates with 

different widths, b  (3, 5, and 7 cm).  Parameters were 

determined using the five different methods outlined 

previously in previously. 

Figure 9 shows the fits produced by the first three 

methods for a single test.  Methods 1 and 3 yield similar 

curves, though varying slightly.  The curve produced by 

method 2 appears very different and is strongly biased 

towards fitting the initial data points of each test.  

Methods 1 and 2 produced results identical to methods 5 

and 4, respectively.  The same trends of each different 

method fit are seen in all of the other pressure-sinkage 

tests. 

 

Figure 9: Sample estimation for 5-cm plate. 

It is important to recognize that no exponential function 

will closely fit the actual shape of the data curves.  This is 

a direct consequence of the fact that Bekker’s exponential 

relationship in equation (1) is an empirical estimation, not 

a physical law, and it does not account well for deviance 

in the early behavior (when sinkage is less than about 15 

mm). 

Average values of n , 
eqk , and least-squares error for 

each fitting method and plate size are shown in Table 2. 
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Table 2: Average parameters and error for 3-cm, 5-cm, 

and 7-cm plates, Bekker’s equation. 

 

Methods 1, 3 and 5 have relatively small fit errors.  The 

parameters found by methods 2 and 4 are substantially 

different than those of the other methods; the sinkage 

exponent n  is much higher and the coefficient keq is much 

larger.  As noted previously, these methods fit low-

sinkage data points well but poorly match the rest of the 

data. 

Several important conclusions may be drawn from these 

results.  First, Wong’s method (method 1) has proven to 

be very reliable as compared to a similar numerical 

method (method 3).  Secondly, it gives a very good 

approximation to the best fit in the z  domain.  

Nevertheless, estimation in the log domain and in the 

z  domain will yield different parameters. A third 

observation is that the weighting factor 
2  is necessary 

for best results in the log-log domain. 

The error found by methods 1 and 3 is comparable.  The (

n , 
eqk ) parameter pairs found by methods 1 and 3 also 

produce a similar pressure-sinkage curve, so it is 

concluded that either method may be used for comparable 

predictions.  It is interesting to note, however, that the 

individual parameters yielded from methods 1 and 3 can 

be significantly different despite both yielding a good fit.  

Parameter Covariance 

The covariance demonstrated by n  and 
eqk  requires 

attention before proceeding to a statistical analysis.  Figure 

10 illustrates the apparent correlation of Bekker’s 

parameters.  Theoretically, every test should yield a 

similar n, but each plate size should yield a different keq. 

 

Figure 10: Relationship between n  and 
eqk , Bekker’s 

equation. 

In this case, n  and 
eqk  show positive correspondence.  

This correspondence may be explained by noting that 

modifying the units of 
eqk  has a significant effect. The 

relationship between n  and 
eqk  estimations exist 

because different combinations may yield a similar 

pressure prediction, and because the unit of 
eqk  is 

dependent on n  itself: 

  
 

 

 
 

 
n

pressureunits
k units

sinkageunits
   (48) 

To mitigate this difficulty, Reece’s revision of Bekker’s 

equation (Equation (16)) was implemented so that the 

unit of 
eqk  is always in pressure units and does not 

depend on n . Applying Equation (16) (instead of 

Equation (15)) to solve for the parameters resulted in 

very little n-keq’ correlation for our data, as shown in 

Figure 11.  For each plate size, keq’ demonstrated no 

visible trend with n. 
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Figure 11: Relationship between n and keq’, Reece’s 

modification. 

For each experimental run, Equation (16) was fit to a plot 

of the pressure as a function of sinkage. The equivalent 

pressure-sinkage constant, 
eqk ’, and exponent of sinkage 

to plate width, n , found in Reece’s equation were 

determined by minimizing an error function based on the 

least-squares method (analogous to method 3, described 

in the parameter estimation section).  The mean and 

standard deviation were calculated to quantify the 

experimental variability of each soil parameter. The 

parameters for each data set are recorded in Table 3. 

Table 3: Pressure-sinkage parameters and the mean and 

standard deviation for each plate size, Reece’s equation. 

Values from experimental runs are italicized. 

 

The standard deviation of the Reece parameters were 

propagated to uncertainty in pressure by applying the 

statistical techniques that resulted in Equation (47).  The 

uncertainty of Reece’s model for the pressure,  , at a 

given sinkage, z , can be obtained as: 

  '

2
2

2 2 2

'
eq

nk
eq

u u u
nk



    
         

 (49) 

where 

  

'

'

n

eq

n

eq

z

bk

z z
k ln

n b b





  
  

  

    
    

    

 (50) 
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and the uncertainties of the independent parameters '
eqk

u  

and 
nu  are made equivalent to the standard deviation of 

the pressure-sinkage parameters in Table 3. 

Figure 12 - Figure 14 show the uncertainty estimation of 

the pressure-sinkage model for plate widths of 3, 5, and 7 

cm, respectively, overlaid with the mean and standard 

deviation of the experimental pressure data.  

As can be seen in Figure 12 - Figure 14, although Reece’s 

model does not precisely capture the pressure-sinkage 

behavior, the model uncertainty provides a close estimate 

of the experimental standard deviation.  

 

Figure 12: Uncertainty estimation for pressure-sinkage 

test for 3 cm plate. 

 

Figure 13: Uncertainty estimation for pressure-sinkage 

test for 5 cm plate. 

 

Figure 14: Uncertainty estimation for pressure-sinkage 

test for 7 cm plate. 

In contrast, if the uncertainty were to be determined by 

the standard deviations of Bekker’s parameters, the 

bounds would be much wider than the experimental 

deviations, as illustrated in Figure 15 - Figure 17. 

 

Figure 15: 3 cm plate, Bekker’s parameters. 

 

Figure 16: 5 cm plate, Bekker’s parameters. 
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Figure 17: 7 cm plate, Bekker’s parameters. 

The mean values of Reece’s model parameters for the 5 

cm plate (keq,5’ = 0.141, n = 0.889) were used to estimate 

the mean pressure-sinkage curve for the wheel 

performance analyses in this study.  This plate size was 

selected because its contact patch area most closely 

resembles that of the single wheel used in this study. 

Direct Shear Test 
A total of 12 direct shear tests were performed to analyze 

the shear characteristics of the dry soil. The tests were 

repeated three times for four different normal stresses 

each (2.08, 2.86, 5.33, and 17.83 kPa).  For each 

experimental run that was carried out for the direct shear 

test, Equation (23) was fit to a plot of the shear stress as a 

function of shear displacement. The residual shear stress, 

res , and shear modulus, K , found in Equation (23) were 

determined by minimizing an error function based on the 

least squares method. The parameters for each data set are 

recorded in Table 4. The mean and standard deviation are 

calculated to quantify the variability of each soil 

parameter. 

Table 4: Soil parameters based on shear-displacement 

curve fits along with the mean and standard deviation for 

each parameter. Values for experimental runs are 

italicized. 

 

The results of the analysis in Table 4 were used to 

determine the cohesion and angle of friction of the soil. 

The maximum shear stress and applied normal stress are 

related using Equation (27),  and are shown in Figure 18. 

 

Figure 18: The cohesion and angle of friction of the soil 

are determined using the Mohr-Coulomb failure criteria. 

The cohesion is the intercept of the plot and the angle of 

friction is the slope. 

Based on this linear curve fit and Equation (27), the 

cohesion of the material is equal to 298.123 Pa and the 

angle of internal friction is equal to 19.735 degrees. Using 

Equation (47) and Equation (28), the uncertainty is 

239.735 Pa and 1.277 degrees for cohesion and internal 

friction angle, respectively. 

To demonstrate the propagation of the variability of the 

experimental parameters to the uncertainty of Janosi and 

Hanamoto’s model, Equation (47) was applied using the 

data in Table 4. Figure 19 - Figure 22 compare the 

uncertainty estimation of the direct shear tests for varying 

normal stresses to the mean and standard deviation of the 

experimental data. Although Janosi and Hanamoto’s 

model does not precisely capture the shear-displacement 

behavior for dense soil, the cohesion and angle of friction 
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have been shown to be independent of density when using 

the residual shear stress [10]. It is important to note that 

the shear modulus is dependent on density. Janosi and 

Hanamoto’s model was used to obtain the mean value of 

the shear-displacement estimation. The uncertainty of 

Equation (23) for the shear stress,  , at a given shear 

displacement, j , is approximated as: 

  

2 2

2 2 2

res

re

K

s

u u u
K

 

 



   
    

   
 (51) 

where 

 

2

1

,

res

K

r s

j

e

j

K

e

j
e

KK















 
 













  (52) 

and the uncertainties, 
res

u  and Ku , of the independent 

parameters are determined by the standard deviation of 

the parameters determined by the direct shear tests in 

Table 4. 

 

Figure 19: Model uncertainty estimation and 

experimental standard deviation for a normal stress of 

2.08 kPa on loose soil. 

 

Figure 20: Model uncertainty estimation and 

experimental standard deviation for a normal stress of 

2.86 kPa on dense soil. 

 

Figure 21: Model uncertainty estimation and 

experimental standard deviation for a normal stress of 

5.33 kPa on dense soil. 
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Figure 22: Model uncertainty estimation and 

experimental standard deviation for a normal stress of 

17.83 kPa on dense soil. 

Force sensors at five locations across the width of the 

wheel (Figure 6) measured the normal and tangential 

stress distributions (Figure 23 - Figure 28). Similarly, the 

drawbar pull, torque, and wheel sinkage at five different 

slip ratios ranging from -70% to 70%, and two different 

normal loads of 70 N and 135 N, shown in Figure 29 - 

Figure 34, were measured using the single-wheel test bed 

in Figure 4.  

The uncertainty estimation method is used along with the 

soil parameters in Table 5 and wheel properties in Table 6 

to compare the wheel performance model to the 

experimental values of wheel performance. The normal 

and tangential stresses at the wheel-soil interface were 

calculated from Equations (16) and (30), respectively, and 

plotted in Figure 23 - Figure 28. The drawbar pull, torque, 

and wheel sinkage at three different slip ratios ranging 

from 10% to 70%, and two different normal loads of 70 N 

and 135 N, shown in Figure 29 - Figure 34, were 

calculated using Equations (37), (38), and (39). 

Table 5: Soil parameters. 

 

Table 6: Wheel properties. 

 

The model uncertainties of the normal and tangential 

stresses are plotted against the experimental data in Figure 

23 - Figure 28. The uncertainty bars are determined 

numerically [16] using a finite differencing technique to 

obtain the sensitivity of the wheel performance with 

respect to each variable. Note that the model uncertainty 

envelope does not sufficiently capture the experimental 

data.  

 

Figure 23: Normal stress vs. contact angle for 10% slip. 

Wheel Performance Uncertainty 
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Figure 24: Normal stress vs. contact angle for 30% slip. 

 

Figure 25: Normal stress vs. contact angle for 70% slip. 

 

Figure 26:Tangential stress vs. contact angle for 10% 

slip. 

 

Figure 27: Tangential stress vs. contact angle for 30% 

slip. 

 

Figure 28: Tangential stress vs. contact angle for 70% 

slip. 

Finally, the uncertainty of the soil parameters is 

propagated to the drawbar pull, torque, and sinkage of the 

wheel, as shown in Figure 29 - Figure 34. The uncertainty 

bars are determined numerically [16] using a finite 

differencing technique to obtain the sensitivity of the 

wheel performance with respect to each variable and are 

plotted along with the measurements based off the 

individual experimental runs. Note that the model 

uncertainty envelope does not sufficiently capture the 

experimental data, particularly in torque and sinkage. 
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Figure 29: The uncertainty of the drawbar pull of the 

wheel for a plate size of 5 cm x 16 cm and vertical force 

of 70N. 

 

Figure 30: The uncertainty of the torque of the wheel for 

a plate size of 5 cm x 16 cm and vertical force of 70N. 

 

Figure 31: The uncertainty of the sinkage of the wheel 

for a plate size of 5 cm x 16 cm and vertical force of 70N. 

 

Figure 32: The uncertainty of the drawbar pull of the 

wheel for a plate size of 5 cm x 16 cm and vertical force 

of 135N. 

 

Figure 33: The uncertainty of the torque of the wheel for 

a plate size of 5 cm x 16 cm and vertical force of 135N. 

 

Figure 34: The uncertainty of the sinkage of the wheel 

for a plate size of 5 cm x 16 cm and vertical force of 

135N. 
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SUMMARY 

The first objective of this paper was to characterize the 

variability of measured soil parameters given 

experimental data. To determine the soil parameters 

associated with normal loads, the pressure and sinkage 

were measured with a plate that penetrated the soil under 

controlled test conditions. To determine the soil 

parameters associated with shearing loads, a standard 

direct shear test was performed under various normal 

loads. The individual soil parameters were obtained from 

the pressure-sinkage tests by fitting the dimensionless 

form of Reece’s equation to each experimental data set. 

Similarly, Janosi and Hanamoto’s equation for shearing 

was fit to the direct shear test to determine the soil 

parameters for each experimental data set. The mean and 

standard deviation were calculated to quantify the 

variability of each soil parameter. This experimental 

variability was used to calculate the uncertainty of the soil 

stress. Based on Figure 12 - Figure 14 and Figure 19 - 

Figure 22, the model uncertainties show good agreement 

with the actual standard deviations of the experimental 

measurements. Since the model parameters were 

estimated from the same experimental data, this 

uncertainty correlation validates the uncertainty 

propagation theory employed in this paper. 

The second objective of this contribution was to quantify 

the uncertainty in wheel performance. Such an 

investigation requires that the wheel can be accurately 

modeled. The sinkage of the rigid wheel model, based on 

the work of Wong and Reece, was determined by relating 

the weight of the wheel and the stresses acting on it in the 

vertical direction. Given the uncertainties of the 

individual soil parameters, it was possible to determine 

the overall uncertainty of the wheel performance (drawbar 

pull, torque, and sinkage) using the statistical techniques 

described in the uncertainty propagation section. The 

uncertainties of the normal and tangential stresses were 

plotted against the experimental data for a single wheel 

traversing over the soil in Figure 23 - Figure 28. 

Additionally, the uncertainty of the soil parameters was 

propagated to the drawbar pull, torque, and sinkage of the 

wheel, as shown in Figure 29 - Figure 34. The wheel 

performance model fails to capture much of the 

experimental stress data and has little overlap with the 

drawbar pull, torque, and sinkage. It is evident from the 

results that the classical terramechanics model used in this 

paper is not suitable for the analysis of lightweight 

vehicles that exhibit relatively low ground pressures (i.e. 

15-35 kPa).  

Several modifications could be made improve the 

accuracy of this model for lightweight vehicles. For 

example, the flat plate assumption of pressure-sinkage 

models has been shown to be inaccurate for lightweight 

vehicles and would likely benefit from revisions 

according to the recent results for diameter-dependent 

models reported in [17]. Further, the shear characteristics 

of the soil, shown in Figure 19 - Figure 22, are not 

adequately captured and could be more accurately 

estimated from making a modification to Equation (23) 

such as in [18] to account for the nonlinear “hump” that 

occurs in dense soil. Lastly, based on the size of the 

vehicle and the nature of the terrain, alternate methods 

could be employed to capture the behavior of each 

individual soil particle [19]. 
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